• Home
  • About Us
  • Faculty
  • FAQs
  • Contact
    • RegisterLogin
      • ALL COURSES
    Data Learning Tree:  - Data visualization, Python, Statistics, Data sciences
    • Home
    • About Us
    • Faculty
    • FAQs
    • Contact
    • RegisterLogin
      • ALL COURSES

      Testing statistical hypotheses in Data sciences using Python 3

      Hands-on practical lessons ready to be applied to real-word cases
      • Home
      • All courses
      • Data sciences
      • Testing statistical hypotheses in Data sciences using Python 3
      CoursesData sciencesTesting statistical hypotheses in Data sciences using Python 3
      • Section 1: Getting started with testing statistical hypotheses with Python 3

        This section explains what we need to know about the class and the prerequisites

        3
        • Lecture1.1
          Lecture 1: What to know about the class 03 min
        • Lecture1.2
          Lecture 2: Installing Python Anaconda distribution on your PC
        • Lecture1.3
          Lecture 3: Testing hypotheses in Data Science with Python 3 class structure 07 min
      • Section 2: Parametric tests of hypotheses using Python

        Testing hypotheses in Python based on parametric assumptions

        15
        • Lecture2.1
          Lecture 4: Testing if the data is normally distributed in Python 3 14 min
        • Lecture2.2
          Lecture 5: Test of hypothesis about a correlation coefficient in Python 13 min
        • Lecture2.3
          Lecture 6: One sample t-test using Python 11 min
        • Lecture2.4
          Lecture 7: One sample Z test about the population the mean in Python 10 min
        • Lecture2.5
          Lecture 8: One sample Z test about a population proportion p 10 min
        • Lecture2.6
          Lecture 9: One sample test about the population variance using Python 08 min
        • Lecture2.7
          Lecture 10: Two samples test about the population mean using t-test in Python 13 min
        • Lecture2.8
          Lecture 11: Two-samples test about the population mean using the Z test in Python 13 min
        • Lecture2.9
          Lecture 12: Two sample test about the population proportion using Python 08 min
        • Lecture2.10
          Lecture 13: Computing the left and right tailed P-values of the Student t-test in Python 06 min
        • Lecture2.11
          Lecture 14: Conducting a paired t-test in Python for related samples 09 min
        • Lecture2.12
          Lecture 15: Test of equality of variance using Barlett’s test in Python 07 min
        • Lecture2.13
          Lecture 16: Chi-squared test of independence using Python 06 min
        • Lecture2.14
          Lecture 17: Chi square Goodness of fit test using Python 09 min
        • Lecture2.15
          Lecture 18: Performing a One way Analysis of Variance (ANOVA) in Python 18 min
      • Section 3: Hands on Project about testing Hypotheses in Python 3

        Project files for the course Testing hypotheses using Python

        1
        • Lecture3.1
          Lecture 19: About the Project for testing hypotheses in Python 3 03 min
      • SECTION 4: Nonparametric tests of hypotheses using Python

        This section is about nonparametric tests of hypotheses using Python.

        10
        • Lecture4.1
          Lecture 20: Mann-Whitney-Wilcoxon test about two populations mean in Python 07 min
        • Lecture4.2
          Lecture 21: Computing the Fisher’s exact test in Python 13 min
        • Lecture4.3
          Lecture 22: Test of equality of two populations variances using Levene’s test in Python 08 min
        • Lecture4.4
          Lecture 23: Computing the Cochran Q test in Python 08 min
        • Lecture4.5
          Lecture 24: Wilcoxon nonparametric test about the population mean in Python – Part 1 04 min
        • Lecture4.6
          Lecture 25: Wilcoxon nonparametric test about the population mean in Python – Part 2 07 min
        • Lecture4.7
          Lecture 26: Computing Kolmogorov-Smirnov test in Python 06 min
        • Lecture4.8
          Lecture 27: Computing the Friedman test in Python (Part1) 09 min
        • Lecture4.9
          Lecture 28: Computing the Friedman test in Python (Part2) 04 min
        • Lecture4.10
          Lecture 29: Using Post hoc nonparametric tests in Python Scikit library 11 min
      • Section 5: Conclusion for Testing Statistical Hypotheses in Data science with Python

        Concluding remarks for the course

        1
        • Lecture5.1
          Conclusion for Testing hypotheses using Python 02 min
        This content is protected, please login and enroll course to view this content!
        Prev Lecture 12: Two sample test about the population proportion using Python
        Next Lecture 14: Conducting a paired t-test in Python for related samples

        Leave A Reply Cancel reply

        Your email address will not be published. Required fields are marked *

        Contact
        • datalearningtree@gmail.com
        •   +(727) 498 5061
        •   Florida, USA.
        Company
        • About Us
        • Blog
        • Contact
        • Become a Teacher
        Useful Links
        • Courses
        • Gallery
        • FAQs
        • Home
        • About Us
        • Faculty
        • FAQs
        • Contact
        Facebook-f
        Twitter
        Google-plus-g
        Linkedin-in

        Copyright @ 2019 Datalearningtree.com

        • Privacy Policy
        • Terms & Conditions

        Login with your site account

        No apps configured. Please contact your administrator.

        Lost your password?

        Not a member yet? Register now

        Register a new account

        Are you a member? Login now

        Modal title

        Message modal